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GENERAL INTRODUCTION 

The contamination of drinking water supplies by nitrate is a growing concern. 

Most communities draw on ground water as their principal source of drinking water. 

In the past, ground water supplies have been relatively pure, thereby supplying 

water which requires veiy little treatment. With this generation's intense farming 

practices, however, ground water supplies are gradually becoming contaminated 

with nitrates. The application of nitrogen fertilizers is considered to be the major 

contributor. It is estimated that barely 50% of all applied nitrogen is actually used 

in crop growth. A large percentage of that unused nitrogen is converted to nitrates 

which begin a slow journey towards the ground water. Even if farming practices 

were drastically altered today, the effects of past application of nitrogen fertilizers 

would still be felt in 20 years time. Section I is a study on one solution to the nitrate 

problem. 

Ion chromatography has become a vital technique for the determination of 

anions. A vast array of ion chromatographic methods exist which employ numerous 

variations on detection, separation and sample preparation. Most detectors used for 

ion chromatography are of a universal type. These types of detectors leave 

differentiation of sample components to the other system components and detect all 

ion which cross their paths. Presented in Section II is an anion specific detector 
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which solves or aids in the solution of many problems often encountered in anion 

chromatography. 

The chromatographic determination of aluminum(III), being a positively 

charged ion, is most often done by cation chromatography. Unfortunately, 

aluminum is often found in a matrix where many other metal cations are also 

present. The limitation to cation chromatography, imposed by this situation, is due 

to cluttering of a separation. Often a determination is literally obscured by the 

presence of other metal cations. Furthermore, the presence of cations much more 

strongly retained than aluminum(III) require long analysis times. The 

determination of aluminum by anion chromatography is presented in Section HI. 

The serendipitous combination of eluent and anion separator column gives this 

technique advantages unprecedented in the world of cation chromatography. 
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SECTION I. SELECTIVE ANION-EXCHANGE RESINS FOR 

NITRATE REMOVAL FROM CONTAMINATED 

DRINKING WATER 
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LITERATURE SURVEY 

The biological hazard of nitrates in drinking water supplies is largely due to a 

disease called nitrate cyanosis, methemoglobinemia, or blue-baby syndrome. The 

disease reduces the 0)qrgen carrying capabilities of the blood similar to that which 

occurs in cyanide poisoning. Certain enzymes must be present in the body to 

prevent the oxidation of hemoglobin to methemoglobin by nitrate. These enzymes 

are not yet formed in young infants. Hence, nitrate poisoning is predominantly 

associated with infants under 3 months of age and can be fatal if not treated 

properly (1). 

The maximum contaminant level (MCL) for nitrate in drinking water in the 

U.S. is set by the Environmental Protection Agency (EPA) at 44 mg/L (ppm). The 

level for Europe, set by the European Economic Community (EEC), is 50 mg/L. As 

of 1984, 6% of all U.S. wells were above 44 ppm. A1985 study estimates that 8% of 

all Danish wells and 7% of all Hungarian wells were above 50 ppm (2). 

Most nitrates found in ground water supplies originate as some form of soil 

nitrogen. Typical examples of soil nitrogen are animal feces (from animal feed 

lots), crop residues, human wastes and agricultural fertilizers. The work of soil 

microorganisms causes these nitrogenous materials to be converted to nitrate. 

Contamination of a water supply results from the slow percolation of this nitrate 

into the ground water. Hence with this generation of intensive farming practices. 
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i.e., the application of mega-doses of nitrogen fertilizers, a virtual time bomb of 

nitrate contamination can be envisioned. One study estimates that "even if the use 

of artificial fertilizers could be stopped...past application would still be felt in 20 

years time" (3). 

A number of processes are capable of removing nitrate from contaminated 

waters. In evaluating a method for drinking water purification, an important factor 

to consider is economy. Processes which may be quite effective in the laboratory 

can quickly become cost prohibitive on a larger scale. A study by Clifford et al. (4) 

compared three popular techniques: reverse osmosis, electrodialysis and ion 

exchange. Their results showed ion-exchange processes as giving at least a 65% cost 

savings over that of the other two methods. 

Some work has been done on nitrate removal by anion-exchange, the majority 

of which involves the use of typical weak-base or strong-base ion exchangers. Such 

commercially available resins usually lack the selectivity for nitrate, resulting in a 

lower net exchange capacity for nitrate removal. The above study by Clifford et al. 

(4) used a non-nitrate-selective resin and hence inherited the disadvantages of 

concentration effects for nitrate at the end of a run (see Results and Discussion 

section) and decreased capacity due to sulfate. Other investigators have found 

similar disadvantages when attempting nitrate removal using resins which are not 

nitrate-selective (4,5,6). 

Another study by Clifford and Weber (5) investigated 30 commercially 
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available anion-exchange resins and related selectivity to a number of resin 

properties. Among the strong-base type I (trimethylammonium) resins, increased 

crosslinking had a positive effect on nitrate selectivity. The use of a gel or 

macroreticular resin base, as opposed to an isoporous resin, was also found to 

increase nitrate selectivity. Their work involved the use of only commercially 

available strong-base resins of the trimethylammonium or pyridinium type. The 

effect of the quaternary ammonium site on nitrate selectivity was not investigated by 

Clifford and Weber. Work by Outer (7), however, found some striking evidence for 

the effects of alkyl chain length on the fixed quaternary ammonium sites. As the 

number of carbons in the R groups increased from three (trimethyl) to nine 

(tripropyl), the nitrate to sulfate selectivity coefficient (K^) increased 10 fold. A 

patent by Guter (8) demonstrates an increase in of 100 fold on increasing the R 

groups from methyl to butyl. 

Several investigators have explored the use of weak-base anion-exchangers for 

nitrate removal. Selneczi (9) and Andrejewski (10) removed nitrate from drinking 

water by weak-base resins, following acidification of the water with CO2. In each 

case, however, sulfate had to be removed completely before the resin could retain 

nitrate. Rolke et al. (11) used weak-base exchange to remove chloride, sulfate and 

nitrate from coal gasification waste waters. A study by Higgins (12) used weak-base 

anion-exchange to recover nitrate from a fertilizer plant waste water. Regeneration 

of the spent resin with ammonium hydroxide yielded ammonium nitrate which could 
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be recovered as a usable fertilizer product. 

The major disadvantage of nitrate removal by ion-exchange is the disposal or 

treatment of the spent régénérant. A study by Solt and Klapwijk (13) demonstrates 

a rather elegant solution to the problem. Strong-base anion-exchange resins are 

most economically regenerated with concentrated sodium chloride solutions. 

Because regeneration is not 100% efficient, a nitrate contaminated brine waste 

results. In the above study, this brine solution was treated with anaerobic bacteria 

to reduce the nitrate to diatomic nitrogen (N2). After removal of sulfate ion by 

precipitation as calcium sulfate, the brine could be reused in the next regeneration. 

Schemes using anaerobic bacteria to remove nitrate directly from drinking water 

have been proposed. A serious limitation to such methods is that reduction of 

nitrate can sometimes be incomplete, yielding nitrite. Furthermore, anaerobic 

bacteria require the addition of an electron donor, usually methanol. Hence, the 

possibility of introducing nitrite, a known carcinogen and methanol, a toxic 

substance, into a water supply make this method highly prohibitive. The 

combination of ion-exchange with anaerobic bacteria is a way to avoid the primary 

objections of each method. 

In addition to this work, and the works of Outer (7,8), other studies have 

centered around the development of a nitrate-selective ion-exchange resin. 

Houptmann et al. (14) attached 3-amino-l,2,4-triazole to a polystyrene-

divinylbenzene (PS-DVB) resin. Triazole is a simpler analog to a well known 
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nitrate precipitating reagent. Nitron. They reported capacities of 2.3 meq/g and 

separation factors of 2-3 for NOg"/SO^" and of 5-10 for NOg'/Cl". Such a high 

preference for nitrate over sulfate is good for reducing the amount of sulfate 

retained, thereby increasing the nitrate capacity of the resin. The high preference 

for nitrate over chloride, however, implies that such a resin could not be efficiently 

regenerated with sodium chloride. This is a typical paradox for resins which are 

highly selective for nitrate. While a large NOg"/SO^" selectivity is desirable, it is 

often accompanied by an increase in the NOg"/Cr selectivity, making the resin 

more resistive to regeneration by sodium chloride. 

Grinstead and Jones (6) adsorbed long-chain amidines or guanines onto PS-

DVB" resins for removal of nitrates from waste waters. The amidines and guanines 

were hydrophobic enough to coat a resin yet some leaching into the effluent was still 

observed. While very favorable NOg'/SO^" selectivity was observed (K^=10^), 

this leaching of the stationary phase not only decreases the capacity of the resin but, 

more importantly, renders the technique unacceptable for drinking water 

applications. In a related patent by Roubinek (15), long-chain amidines were 

covalently bound to a resin matrix. While the leaching problem was obviated, the 

trade off of nitrate selectivity vs. regeneration efficiency remained. Roubinek 

reports that as the length of R in the amidine is increased, nitrate selectivity also 

increased while regeneration efficiency decreased. 
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This study employs phosphonium based anion-exchangers. While the existence 

of quaternary phosphonium resins is not new, their use as high capacity anion 

exchangers in water purification is unprecedented. Cinquini et al. (16) first used 

phosphonium based ion exchange resins in phase-transfer catalysis. Since that time, 

several studies have involved the ion exchange activity of phosphonium resins as 

heterogeneous phase-transfer catalysts (17-23). The present study was inspired by 

the work of Warth et al. (24) who used a low capacity tributylphosphonium resin in 

single-column ion chromatography. 

One final aspect of nitrate removal is illustrated by the work of Prunac and 

Baur (25). During regeneration with sodium chloride, the chloride in the brine 

solution exchanges with nitrate, resulting in a regenerated column and a sodium 

chloride solution contaminated with sodium nitrate. Since the sodium ions in the 

régénérant are not consumed, it is possible to reuse this brine solution for 

regeneration of spent cation-exchangers from water softening. More conveniently, 

as in the work of Prunac and Baur, softening and nitrate removal, followed by 

regeneration with brine, can take place in a single mixed-bed column. 

Concomitantly, the spent régénérant is contaminated with calcium and nitrate ions. 

However, if the anion-exchange resin is not selective for nitrate, and enough sulfate 

is retained, calcium from the cation-exchanger may combine with sulfate from the 

anion-exchanger, resulting in precipitation of calcium sulfate during regeneration. 
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Both non-selective and selective anion-exchange resins were used by Prunac and 

Baur (25) and precipitates were observed for the non-nitrate-selective resin. 
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EXPERIMENTAL 

Capacities 

Capacities were measured by first converting the resin to the nitrate form, then 

quantitatively exchanging the nitrate with chloride ion. The nitrate level in the 

effluent NaCl solution was determined by absorption spectroscopy at 220 nm. 

Approximately 40 mg of vacuum dried resin was placed in the capillary portion 

of a pasture pipet with a glass wool plug as bed support. This transfer was most 

easily accomplished using a piece of weighing paper shaped into a funnel and the 

resin dry. The resin was then wetted with deionized water and air channels removed 

by applying pressure with a large pipet bulb. The bed "was converted to the nitrate 

form by passing 200 ml of 1 M NaNOg through the column at a rate of 0.2 ml/min. 

Residual nitrate was removed by passing 200 ml of deionized water. Bound nitrate 

was then removed and measured by passing 100 ml of 2 M NaCl through the 

column, collected in a lOO-ml volumetric flask, and the eluted nitrate determined 

spectrophotometrically at 220 run. 

Resin Functionalization 

For all of the anion-exchange materials in this study, functionalization began 

with a chloromethylated resin supplied by Rohm and Haas Co. The majority of this 

work used a chloromethylated XE-505 resin. 

Approximately 1 g of chloromethylated resin was mixed with 30 ml of methanol 
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in a 100-ml round-bottom flask. A five-fold excess of nucleophile (amine or 

phosphine) was then added to the mixture and the reaction was allowed to proceed 

at room temperature for 7 days. Stirring was applied for only 30 min. each day as 

continual stirring for the entire period resulted in severe fragmentation of the resin 

beads. A reaction period of 7 days at room temperature, as in reference (26), was 

adopted to ensure complete reaction without the possibility of decomposing ion-

exchange sites inherent with high reaction temperatures. On completion of the 

reaction period, the resin was filtered and washed 3 times with methanol, then water 

and acetone and, finally, air dried. 

Phosphine Synthesis 

The procedure for the synthesis of tripropyl and tripentylphosphine was 

adapted from work by Maier et al. (27a) and Kaesz and Stone (27b). Under a 

nitrogen atmosphere, 1.04 moles of propyl (128 g) or pentyl bromide (157 g) was 

added in 5 ml increments to 1.04 moles of magnesium turnings (25.4 g) in 1 L of 

THF solvent. Initiation of the Grignard reaction was aided by heating the reaction 

flask and crushing the magnesium turnings to expose fresh magnesium surface. 

Following the complete addition of the alkyl bromide, the THF mixture was 

refluxed for 20 minutes, cooled to -78° C and 23 ml of phosphorous trichloride (0.26 

moles), diluted with 350 ml of pentane, was added drop-wise over a period of 2 h. 

The mixture, quite heavy with solids, was then allowed to warm to room 

temperature and heated to reflux for 1 h. Ammonium chloride and 40 mg of 
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hydroquinone (0.1 mole %), an oxidation inhibitor, were added and the solution was 

allowed to cool overnight. The solids were then filtered and washed with THF, the 

THF washings combined, and the solution concentrated by distillation on which 

more solids precipitated. Approximately 100 ml of ether was then added and the 

solids were filtered, washed and the filtrates combined. The ether was removed by 

distillation and the trialkylphosphine product distilled under 8 torr at 78-82° C. The 

yield for the preparation of tripropylphosphine was 52%. 

Nitrate Removal 

The procedure for determining the ability of a resin to remove nitrate from 

drinking water was done in as direct a manner as possible. Tap water was placed in 

a plastic 55 gallon reservoir and sodium nitrate added to give a level of about 90 

ppm NOg". The contaminated tap water was pumped, via a peristaltic pump, 

through a small column containing the anion-exchange resin. The bed dimensions 

were approximately 2.6 x 0.54 cm with a bed volume of 0.6 ml. Prior to the 

experiment, all resins were placed entirely in the chloride form by shaking, 

overnight, with several changes of 2 M NaCl. The column effluent was passed 

through a uv-vis detector and then to a fraction collector. Fractions were analyzed 

for chloride, nitrate and sulfate by anion chromatography and the results plotted 

against the number of bed volumes passed through the column. On line uv-vis 

detection of nitrate (A = 220nm) facilitated the selection of fractions for 



www.manaraa.com

chromatographic analysis and indicated the complete exhaustion of a resin. 

Ion Chromatography 

Anion determinations for all curves and selectivity coefficients in this study 

were done by single column anion chromatography. The system consisted of the 

following components: an Eldex model AA-94 dual channel pump, a Li-Chroma-

Damp m pulse dampener, a Hitachi model 655A-40 autosampler, a Wescan model 

269-029 anion-exchange column and model 213A conductivity detector and a 

Hitachi D-2000 integrator. The eluent used for most anions was 2.0 mM potassium 

acid phthalate at a pH of 6.5. For the determinations of fluoride and acetate, a 3 

mM sodium benzoate eluent was used. 

Selectivity Coefficients 

Selectivity coefficients were measured by a batch method similar to that used 

by Clifford and Weber (5). A given resin was first converted to the nitrate form. 

This consisted of passing 200 ml of a 2 M solution of NaNOg through a column of 

0.5 g of resin at 0.2 ml/min. The resin was then placed in a 50-ml plastic bottle and 

shaken overnight with several changes of the same salt solution. Such an elaborate 

procedure was found to be necessary for 100% conversion of a resin into the nitrate 

form. The resin was washed with deionized water followed by acetone then vacuum 

dried at room temperature and stored in a desiccator. Batch equilibrations were 

done by placing 150 mg of the resin in 100-ml plastic bottles, adding 50mL of a 5 

mM sulfate solution and shaking for 3 days. The supernatant solutions were 
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removed and filtered with 0.2 nm filters. As recommended by Bagchi and Haddad 

(28), the filters were first conditioned with 20 ml of supernatant before collection of 

a sample. Determinations of anions in the equilibrated solutions were done by ion 

chromatography. 

The selectivity coefficients for the chloride systems were calculated in slightly 

different manner. About 10 grams of resin was converted to the chloride form by 

shaking overnight with 2 M sodium chloride. The resins were then washed and 

shaken overnight with deionized water. The solution anions were equilibrated and 

determined in the same manner as for the nitrate system above. After equilibration, 

the total anion equivalents in solution were consistently higher than the amount of 

anion equivalents added. It was later discovered that this extra anion concentration 

was due to residual sodium chloride incompletely washed from the resin matrix. A 

sample of each resin was then shaken with SO ml of deionized water for three days 

and the average amounts of sodium chloride in the matrix calculated. This extra 

chloride ion was taken into consideration in the selectivity coefficient calculations. 

Regeneration Studies 

Regeneration efficiency was evaluated by passing a 1 or 2 M solution of sodium 

chloride through a column of the resin. A peristaltic pump was used to pump the 

régénérant at a rate of 0.2 ml/min and fractions of the spent régénérant were 

collected with a fraction collector. The fractions were then diluted 1:10 and their 

nitrate and sulfate concentrations determined by anion chromatography. 



www.manaraa.com

Mixed-bed 

The efficacy of water softening and nitrate removal with a single mixed-bed of 

resins was evaluated. The apparatus used is shown in Figure 1. A 110-gallon 

stainless-steel tank served as the sample water reservoir. The tank was filled with 

tap water and spiked to 90 ppm NO3", 250 ppm SO^" and 350 ppm Ca^^. The bed 

consisted of 39 ml (3 inches) of the anion-exchanger and 52 ml (4 inches) of Dowex 

50 cation-exchange resin. A homogeneous mix of the resins was obtained by wetting 

the bed, mixing vigorously by inverting several times followed immediately by a fast 

flow of distilled water. Mixed in this way, the usual settling and stratification of the 

bed was avoided, allowing the resin to be "frozen" as randomly as possible. Influent 

and regenerate solution was applied by separate peristaltic pumps (Masterflex 

model 7520-35). The pumps were connected to a Dayton 24 h timer and control of 

the pumps was such that the influent pump was off while the régénérant pump was 

on and vice versa. The outlet of each pump was connected to the column inlet by a 

T-connector. Monitoring of the breakthrough was done by on line detection of 

calcium by a calcium ion selective electrode and nitrate by uv-vis detection at 220 

nm. The calcium detector was an Orion model 93-20 electrode and a Corning 

model 12 pH/millivolt meter. Nitrate was detected by uv-vis absorption with a 

Tracor model 980 detector fitted with a 4-mm-diameter quartz tube as a flow cell. 

The output from each detector was connected to a Fisher series 5000 dual-pen strip-
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chart recorder. Electronic smoothing of the outputs was done by an R-C filter with a 

time constant of 10 seconds. The detectors were protected from high concentrations 

of brine solution by employing a 3-way solenoid valve between the column and 

detector bank. A second timer was used to switch the column effluent to waste 

during, and for 1 h following, regeneration to ensure that all brine was flushed 6om 

the system prior to switching the detectors on line. The strip-chart recorder was 

connected to the same circuit as the influent pump so that recording of 

breakthrough volumes would start at the beginning of each cycle. Such an elaborate 

system enabled the unattended automation of data collection and high 

reproducibility of column recycling over a long period of time. 
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Figure 1. Schematic diagram of the mixed bed apparatus. 
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RESULTS AND DISCUSSION 

Resin Functionalization 

The basis of this work is the synthesis of an anion exchange resin with high 

exchange capacity and high selectivity for nitrate ion. This section primarily deals 

with reaction conditions which will optimize the capacity of such a resin. 

In this study, the functionalization of a chloromethylated resin involves the 

reaction of a bound electrophile with a neutral nucleophile (tertiary amine or 

phosphine) and is shown in Figure 2a. Considerations similar to those used for 

solution chemistry involving nucleophilic reactions with a neutral nucleophile were 

also applied to resin functionalization. The yield of a nucleophilic reaction can be 

increased by the stabilization of the transition state and the destabilization of 

reactants (29). In the case of resin functionalization, the reactants are neutral and 

the transition state involves a large degree of charge separation. Selection of a 

highly polar solvent would therefore decrease solvation of the reactants and 

increase their potential energy. Fortunately, the polar transition state would be well 

solvated by a polar solvent and thereby show a decrease in potential energy. Hence, 

the overall result of using a polar solvent is to decrease the activation barrier 

resulting in increased capacity. 

For this work, methanol was the solvent of choice. Although water is more 
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Resin 

Resin CI-̂ CI + R^N: R N: 
3 

CI 
S-

ResinVO-CH -NRgCI  

Transition State 

Reactants 

Product 

Figure 2a. Functionalization of a chloromethylated resin with a trialkylamine. 
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polar, it does not wet the PS-DVB matrix adequately and so may restrict access to 

part of the resin surface. A non-polar solvent, dichloromethane, was evaluated. 

This solvent would serve to increase the activation barrier and, as expected, was 

found to significantly reduce the yield of the functionalization procedure. 

Another approach to increasing capacity is to improve the strength or 

nucleophilicity of the attacking group. Charged or highly polarizable nucleophiles 

are generally more reactive than neutral, tertiaiy amines. The higher polarizability 

and larger size of a tertiary phosphine enabled the preparation of anion exchangers 

with higher capacity while retaining high nitrate selectivity. 

Selectivity Coefficients 

Table I is a compilation of selectivity coefficients and capacities for the 

homologous series of quaternary ammonium and phosphonium resins. Comparison 

of the tripropyl and tributyl analogs in each series demonstrates a 5 to 6-fold 

increase in selectivity coefficient (K^) for the phosphonium resin. This increase in 

selectivity is also concurrent with a 21% increase in capacity. 

Within each series, as the number of carbons on the exchange site is increased, 

selectivity for nitrate is also increased. Figure 2b is a graphical demonstration of the 

trends shown in Table I. The tributyl and tripentylphosphonium resins are 

particularly phenomenal with as high as 840,000. This trend in selectivity 

appears to be due to steric hindrance about the anion exchange site. While 

increased bulk in the exchange site is advantageous for high nitrate selectivity, a 
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Table I. Selectivity coeffîcients for quaternary ammonium and 
phosphonium exchangers on XE-505 resin matrix 

Resin Selectivity Coefficient^ Capacity^ 

Trimethylamine 600 3.61 

Triethylamine 9,000 2.39 

Tripropylamine 26,700 1.52 

Tributylamine 102,000 1.23 

Trimethylphosphine 2,000 2.22 

Triethylphosphine 19,500 2.71 

Tripropylphosphine 120,000 1.99 

Tributylphosphine 660,000 1.68 

Tripentylphosphine 840,000 1.27 

from units of mM/g and mM/mL. 

^mEq/g. 



www.manaraa.com

23 

Selectivity Coefficients 
vs. Number of Carbons 
9 

8 
o 
X 7 

6 

•s 5 
1 s 4 
o 
••s 
> 

3 

1 2 

0) 1 

0 

Phosphonium 

Ammonium 

0 3 6 9 12 15 

Number of Carbons in Exchange Site 

Figure 2b. Plot of selectivity coefficients vs. number of carbons in exchanger 
group. 



www.manaraa.com

24 

trend of decreasing capacity is also clearly demonstrated. 

The fact that capacity decreases for larger, more hindered exchange sites is due 

to steric hindrance during the functionalization process. For covalent attachment to 

occur, the nucleophilic center must approach the electrophilic carbon of the 

chloromethylated resin. As the length of R increases, it physically restricts the 

approach of the nucleophile and so decreases the yield (or capacity) of the 

functionalization step. The reactivity of a nucleophile depends on a number of 

factors but in this case a balance between steric factors and nucleophilicity of the 

amine center appears to be prevalent. 

The trends in selectivity coefficients make clear the need for large R groups in 

the ion exchange sites. This requirement, however, is directly contradictory to 

increasing the yield of the functionalization process. One possible solution to this 

problem is to separate the two steps. The synthesis a molecule in which the 

nucleophile is unhindered and separated from a pre-formed, hindered ion exchange 

site is one approach. This molecule could then be used to functionalize a resin in 

high yield while retaining high selectivity. All attempts at the preparation of such a 

dynamic molecule were, however, unsuccessful. 

A second approach, which was used in this study, was to change the indentity of 

the attacking group from tertiary amine to tertiary phosphine. In contrast to the 

amines, phosphines are more polarizable nucleophiles making them better able to 

compensate for the build up of electron density in the transition state. The net 
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effect is a lowering of the transition state potential energy which translates into 

better nucleophilicity. As can be seen in Table I, the result of this improved 

nucleophilicity is the ability to retain increased bulk about the anion exchange site 

while increasing capacity. 

While the effect of large R groups on nitrate selectivity is clearly demonstrated, 

a fundamental explanation for this phenomenon is not certain. The effects of fixed 

exchange site separation, as proposed by Clifford and Weber (5) were considered. 

It seems logical to envision a larger steric requirement for placement of the bulky 

exchange sites. This need for space would tend to spread out exchange sites, 

possibly resulting in nearest neighbors too far away for a divalent ion, such as 

sulfate, to occupy two sites àt once. In this case, electroselectivity rules (30) may 

become less important and sulfate selectivity might then fall under the accepted 

mechanism for monovalent ions (31). In that event, the high degree of hydration on 

sulfate would cause it to be preferred far less than nitrate and chloride ions. The 

result of this type of binding mechanism would be a 1:1 molar exchange ratio for 

sulfate and nitrate ions (i.e., one divalent sulfate ion would exchange for one 

monovalent nitrate ion). 

Table II presents some contraiy evidence to the notion of sulfate binding to a 

single ion exchange site. In each coefficient measurement, the initial solution 

concentration was 5 mM (10 mN) of sulfate ion. Depending on the mechanism of 

the exchange process, total solution ions after equilibration will be either 5 mM or 
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Table II. Solution equivalents following batch equilibrations for 
quaternaiyammonium and phosphonium exchangers on XE-505 resin 
matrix 

Resin 
Solution 

Normalities 
Solution 

Molarities 
Selectivity 

Coçffiçiçnt^ 

Trimethylamine 10.2 6.20 600 

Triethylamine 10.1 4.06 9,000 

Tripropylamine 10.0 3.72 26,700 

Tributylamine 10.1 3.02 102,000 

Trimethylphosphine 7.46 2.09 2,000 

Triethylphosphine 10.1 3.49 19,500 

Tripropylphosphine 10.0 3.10 120,000 

Tributylphosphine 10.1 2.93 660,000 

Tripentylphosphine 9.88 2.98 840,000 

from units of mM/g and mM/mL. 
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10 mN. Given the above theory, unhindered exchangers (low K^) will exchange on 

a 1:1 equivalent basis (i.e., 1 sulfate ion exchanges for 2 nitrate ions) yielding a 10 

mN solution after equilibration. Hindered exchanger sites (high K^), on the other 

hand, would exchange on a 1:1 molar ratio (i.e., 1 sulfate ion exchanges for 1 nitrate 

ion). This would predict a correlation with solution molarities. More simply stated; 

initial concentration was 5 mM and so the final, equilibrated solution concentration 

should be 5 mM. What was found in every case, however, was a solution 

concentration of 10 mN after equilibration and in no case did solution 

concentrations add up to 5 mM. This implies that no matter what the size of the R 

group in the exchange site, sulfate always occupies two sites. 

While exchange sites may be farther apart in the more hindered exchangers, 

sulfate ion is still able to bind two exchange sites simultaneously. The question may 

then be one of electrostatic bond strength. As the sulfate-resin bonds must become 

longer due to steric hindrance, the sacrifice may be in the strength of those bonds 

resulting in a decrease in sulfate affinity. This would explain the large increase in 

as well as the 2:1 nitrate to sulfate exchange ratio. 

Table III presents some evidence for the contribution of decreasing sulfate 

affinity to K^. Selectivity coefficients of several anions for the trimethylammonium 

and the tributylphosphonium resins were determined against chloride ion. The 

table shows a 9-fold decrease in the coefficient for sulfate, and a 6-fold decrease for 

thiosulfate, for the phosphonium resin. Such a decrease in the selectivity for 
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Table HI. Selectivity coefficients of trimethylammonium and 
tributylphosphonium on XE-505 resin for various anions vs. chloride 

Anion 
MegN 
resin 

%i 

BugP 
resin 

Dowexl-8x 
resin 

Fluoride 

Acetate 

Bromide 

Nitrate 

Thiosulfate 

Sulfate 

0.047 

0.08 

4.57 

4.8 

0.22 

0.029 

0.019 

0.63 

19.5 

19.1 

0.038 

0.0033 

4.25 

0.26 
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divalent ions is expected if the distance between exchange sites is a valid 

consideration. Of the monovalent anions tested, only fluoride showed a decrease in 

the coefficient, while acetate, bromide and nitrate all demonstrated increases in 

selectivity coefficient for the phosphonimn resin. 

Some concern is felt over the selectivity coefficients for sulfate in Tables n and 

in. It is well known, in the realm of ion chromatography, that sulfate is retained 

much more strongly than nitrate or chloride. In spite of this, and I^, for all 

resins, are below 1. This indicates that sulfate is the least preferred ion in every 

case. Some consolation is found in a study by Boari et al. (30), where for 

various resins were reported in the range of 0.017 to 1.13. Furthermore, separation 

factors in ion chromatography are heavily influenced by the choice of eluent. 

Monovalent eluents tend to elute monovalent anions most efficiently. The use of a 

divalent or trivalent eluent will often show reversals of retention behavior. Since 

the most common eluents in ion chromatography are monovalent (i.e., hydroxide, 

salicylate, bicarbonate, phthalate at low pH), comparison of batch selectivity 

coefficients to ion chromatographic retention data may not be valid. 

Table HI also includes selectivity coefficients for Dowexl-8x resin as a control. 

Note that the coefficient for nitrate did not differ from the Me^N resin, but that the 

coefficient for sulfate increased by a factor of 10. Since the Dowex resin is also 
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functionalized with trimethylamine, this behavior is believed to be due to a 

difference in crosslinking. The study by Clifford and Weber (5) explained these 

effects in terms of site proximity. According to that study, increased rigidity in a 

resin, due to higher crosslinking, restricts the exchange sites from conforming to the 

bonding requirements of a divalent ion. The result of this hindrance is expressed in 

the selectivity coefficient. 

The present work does not prove or disprove the significance of site proximity 

on the selectivity of a resin. A more definitive study would be to spectroscopically 

examine the exchange sites with a fluorescent probe, similar to the work of 

Lochmuller et al. (32). When pyrene molecules are within 2-8 angstroms from each 

other, a characteristic emission band due to the formation of excited state dimers is 

observed. When pyrene molecules are separated by more than 8 angstroms, only 

emission due to the monomers is observed. In the above study by Lochmuller et al., 

pyrene was covalently bound to the surface of silica gel. By observing the ratios of 

monomer to dimer emissions, the intermolecular distances of species bound to the 

silica surface were inferred. 

A similar study could be applied to the anion exchange sites of a resin. Pyrene 

can be easily converted to its sulfonate anion (33) and electrostatically bound to the 
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exchange sites of a resin. The analysis of the fluorescent spectrum of a resin, 

charged into the pyrene sulfonate form, might then demonstrate the distribution of 

anion exchange sites. 

Nitrate Removal 

The efficiency of a resin to remove nitrate is the result of a combination of 

selectivity and overall exchange capacity. While a resin may have a very high 

capacity, a low selectivity for nitrate will cause most of that capacity to be "wasted" 

on the most preferred ion (usually sulfate). Hence, the overall capacity of a resin 

does not directly translate into nitrate capacity. Evaluation of nitrate removal for a 

given resin was therefore done in as direct a manner as possible 

The breakthrough profile of Dowex l-8x is shown in Figure 3. Initially, the 

concentrations of nitrate and sulfate are low, as those ions are exchanged for 

chloride on the resin. Correspondingly, the concentration of chloride in the effluent 

represents the total ion equivalents entering the column. In this case chloride 

effluent equals the sulfate plus nitrate plus influent chloride equivalents. Dowex 1-

8x is an example of a resin where is less than one. The resin prefers sulfate over 

nitrate and the resultant curve demonstrates a concentration effect where nitrate 

levels rise well above the influent nitrate concentration. 

The reason for this phenomena is illustrated in Figure 4. During exhaustion of 
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Figure 3. Breakthrough profile for Dowex 1-8X resin, 200-400 mesh. Bed 
volume, 0.8 ml; flow rate, 1.7 ml/min. 
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Dowex 1 (figure 4a), sulfate and nitrate exchange with chloride. Since the resin 

greatly prefers sulfate, it is the Grst anion to exchange. Influent nitrate passes by the 

bound sulfate and exchanges for chloride further down the column. As new sulfate 

enters the column, it pushes off bound nitrate, which in turn pushes off bound 

chloride. This chain of events continues until the chloride form of the resin is 

exhausted. 

Figure 4b is the composition of the column just prior to nitrate breakthrough. 

All chloride form of the resin has been exhausted and so influent nitrate, finding no 

available sites to exchange with, must exit the column. Additionally, influent sulfate 

continues to exchange for sites occupied by nitrate at the top of the nitrate band. 

The nitrate concentration exiting the column consists of influent nitrate plus a 

concentration equivalent to the influent sulfate. Hence, at the end of a run, the 

level of nitrate in the effluent rises well above the influent nitrate concentration. 

Once the nitrate form of the resin is exhausted, the sulfate and nitrate effluent levels 

will equal the influent levels. 

Figure 5 shows the breakthrough profile for a resin where is relatively small 

but above unity. In this case, the resin only slightly prefers nitrate and so both 

sulfate and nitrate exhaust the column on an equal basis. Sulfate breaks through 

first but is closely followed by the nitrate breakthrough and no concentration effect 

is observed. 

The trimethyl, triethyl and tributylammonium resins in Figures 5, 6 and 7 
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Figure 4b. Bed composition of Dowex l-8x during nitrate breakthrough. 
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demonstrate a trend of higher nitrate selectivity for larger R groups in the anion-

exchange site. Initial chloride concentrations in these curves tend towards lower 

and lower values as sulfate becomes less preferred, exchanging for less chloride ions. 

The increase in nitrate selectivity enables a larger portion of the resins capacity to 

be used for nitrate ions. Unfortunately, a concurrent decrease in overall capacity 

was also observed. In the case of the quaternary ammonium series, a larger 

decrease in capacity than could be overcome by selectivity increases resulted in 

lower net nitrate removal capacities. 

Figures 8, 9 and 10 are the breakthrough profiles of a homologous series of 

phosphonium resins. In contrast to the tributylammonium curve in Figure 7, the 

tributylphosphonium resin (figure 8) has retained a high capacity to remove nitrate 

with even greater nitrate selectivity. 

The resins in Figures 9 and 10 were functionalized with a crude, undistilled 

phosphine preparation. The trends in the sulfate curves are as expected. However, 

the net capacity for nitrate may be less due to impurities interfering with 

functionalization. The previous work on selectivity coefficients was done with resins 

made from distilled tripropyl- and tripentylphosphine as described in the 

experimental section. 

Nitrate Removal from Natural Waters 

The ability to remove nitrate from a naturally contaminated water sample was 

evaluated. Several gallons of well water were obtained from George, Iowa, a small 
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Figure 6. Breakthrough profile for triethylammonium group on XE-505 resin. 
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Figure 9. Breakthrough profile for tripropylphosphonium group on XE-505 
resin. Conditions as in Figure 6. 
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Figure 10. Breakthrough profile for tripentylphosphonium group on XE-505 
resin. Conditions as in Figure 6. 
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town in northwest Iowa. The water supply used by George is drawn from an aquifer 

which extends up through North and South Dakota. This aquifer contains about 49 

ppm nitrate from natural sources and so is over the EPA recommended level of 44 

ppm nitrate. 

Figure 11 shows the breakthrough curve for the tributylphosphonium resin. 

Note that very little sulfate is retained and the nitrate level rises above 45 ppm at 

about 1200 bed volumes. Figure 12 shows the breakthrough curve for a 

commercially available nitrate-selective resin, IRA 996. It has triethylammonium 

sites and is bound to a matrix different than that of the resin in Figure 11. 

Comparison of the sulfate breakthrough curves of Figures 11 and 12 indicates that 

the tributylphosphonium resin has much less selectivity for sulfate. The nitrate 

capacity of the IRA 996 resin in Figure 12 is about 700 bed volumes, much less than 

that of the tributylphosphonium resin. 

For both of the resins in Figures 11 and 12, the is well above unity and a 

concentration effect for sulfate is observed. During sulfate breakthrough, influent 

nitrate exchanges with the sulfate on the resin creating the observed concentration 

effect. By the logic presented in Figure 4, the effect on nitrate capacity by increased 

sulfate concentrations might be presumed to be negligible. Figures 13 and 14 are a 

comparison of the tributylphosphonium and IRA 996 resins when the sulfate 

content is increased to 260 ppm. Figure 13 shows a breakthrough almost identical 

to that of a water with low sulfate (figure 11). The IRA 996 resin in Figure 14 
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Figure 11. Decontamination profile for tributylphosphonium group on XE-505 
resin for George, Iowa tap water. Bed volume, 0.5 ml; flow rate 0.5 
ml/min. 
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Figure 13. Decontamination profile for tributylphosphonium group on XE-505 
resin for George, Iowa tap water with added sulfate. Bed volume, 
0.5 ml; flow rate 0.5 ml/min. 
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with added sulfate. Conditions as in Figure 12. 
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however, shows a decrease in nitrate capacity of nearly 200 bed volumes. It is 

apparent that although a resin may be nitrate-selective, it is the degree of nitrate 

selectivity which makes it immune to sulfate interference. 

Regeneration 

The above results for the George water are quite phenomenal. However, the 

resins used were completely in the chloride form. From a scientific basis, it is 

important to have a well defined starting point (such as 100% chloride form resins), 

however, in practice, an exchange material is never completely regenerated. The 

cost of régénérant and the resultant volume of waste makes such a practice highly 

prohibitive. 

Figures 15 and 16 are a comparison of nitrate capacity for IRA 996 and 

tributylphosphonium resins after a partial regeneration of only 7 bed volumes. The 

IRA 996 resin still shows sensitivity to sulfate content but its nitrate capacity is very 

similar to that of the tributylphosphonium resin. The conclusion is that although the 

IRA 996 resin has a lower net capacity for nitrate on complete regeneration, its sites 

are far more efficiently regenerated with sodium chloride during partial 

regeneration. Hence, the same trade off is observed here as was seen by other 

authors (4,5,6); that is as increases, regeneration efficiency decreases. 

The regeneration profiles for nitrate and sulfate of exhausted IRA 996 and 

tributylphosphonium resins are shown in Figures 17 and 18. Comparison of Figures 
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Figure 15. Nitrate removal for IRA 996 and tributylphosphonium resins after 
partial regeneration with 7 bed volumes of 2 M brine solution. Bed 
volume, 8.0 ml; flow rate, 3.5 ml/min; 100 ppm sulfate; 31 ppm 
chloride. 
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Figure 16. Nitrate removal for ERA 996 and tributylphosphonium resins after 
partial regeneration with 7 bed volumes of 2 M brine solution. 
Conditions same as Figure 14 but with 200 ppm sulfate. 
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17 and 18 indicates a much larger retention of sulfate for the IRA 996 resin. The 

nitrate levels for IRA 996 during regeneration, however, more quickly return to a 

lower level than for that of the tributylphosphonium resin. This behavior indicates 

that the bulk of the IRA 996 sites are efficiently regenerated while regeneration of 

the tributylphosphonium sites is initially efficient but that a large percentage of the 

sites are more difficult to regenerate. 

Mixed-bed ion exchange 

The concept of combining anion-exchange nitrate removal with cation-

exchange water softening has the potential of being a very economical process. A 

column of cation-exchange resin and anion-exchange resin, intimately mixed, can 

effectively remove nitrates and calcium (hardness) at the same time. The economic 

advantages are observed during regeneration with sodium chloride. The cation-

exchange regeneration process uses sodium ions to exchange with calcium and 

magnesium on the exhausted resin yielding a regenerated exchanger. In normal 

water softening, the chloride portion of a brine solution serves only as a counter ion 

in the process. In a mixed-bed, this chloride is used for regeneration of the anion-

exchange resin as well. During regeneration of a mixed-bed, one is literally getting 

two regenerations for the price of one. 

A potential problem with a mixed-bed process lies in the fact that anion-

exchangers also retain sulfate. During regeneration, high concentrations of calcium 

and sulfate ions exist which may form precipitates of calcium sulfate. Calcium 



www.manaraa.com

51 

Regeneration of Tributylphosphonium Resin 

11000 

LEGEND 10000-

* nitrate 

— s u l f a t e  
9000-

E 8000 -
Û. 
CL 

7000-

6000-

5000-

4000-

3000-

2000-

1000-

0 7 2 3 5 8 1 6 4 

Bed Volumes 

Figure 17. Regeneration profile for tributylphosphonium on XE-505 resin 
exhausted with 88 ppm nitrate, 124 ppm sulfate. Bed volume, 8.0 
ml; flow rate, 0.2 ml/min; régénérant, 2M sodium chloride. 
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Figure 18. Regeneration profile for IRA 996 resin. Conditions as in figure 17. 
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Figure 19. Breakthrough volumes vs. number of regeneration-exhaustion 
cycles for the mixed bed ion exchange process. Influent water: 90 
ppm nitrate, 250 ppm sulfate and 350 ppm calcium; régénérant: 2M 
sodium chloride. Resins used were Dowex 50w-8x cation exchange 
and IRA 996 anion exchange. 
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sulfate precipitation or gypsum fouling, has been shown to exist in at least one study 

(25). The amount of sulfate retained by the anion-exchange resins can play a 

significant role in gypsum fouling. Obviously, a nitrate-selective resin which holds 

little sulfate, has a major advantage in mixed-bed ion exchange. 

Figure 19 gives the half-height breakthrough volumes of seventeen exhaustion-

regeneration cycles for a mixed-bed of IRA 996 and Dowex 50w-8x resins. Column 

back pressure or head pressure was also monitored for possible blockage of the 

column due to gypsum but no increase over the entire course of the experiment was 

observed. Gypsum fouling may explain the initial drop in capacity, but the lack of 

an increase in system back pressure or observation of calcium sulfate precipitate, 

makes this theory highly unlikely. A more reasonable explanation lies with the 

difference between a fully regenerated (100%) and a partially regenerated resin. As 

demonstrated earlier in Figures 11, 12 and 15, a drastic difference in capacity exists 

between a fully regenerated resin and a partially regenerated resin. The IRA 996 

resin used in this mixed bed evaluation was initially 100% in the chloride form. 

Since the resin is only partially regenerated thereafter, a drop off from the initial 

capacity is expected. What is surprising is the large number of <ycles required for 

this leveling off of capacity to be observed. 
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CONCLUSION 

Phosphonium resins show great promise in nitrate removal from contaminated 

drinking water due to their extremely high nitrate/sulfate selectivity and higher 

capacity. Higher nitrate/sulfate selectivity has been shown to translate into nitrate 

removal capacities immune to the sulfate content of a water supply. Although the 

phosphonium resins regenerate less efficiently, they retain less sulfate than their 

amine counterparts. A major concern with nitrate removal by ion exchange is the 

disposal or decontamination of the nitrate laden brine wastes. A more efficiently 

regenerated resin yields smaller amounts of brine to be disposed. Decontamination 

of a brine by anaerobic bacteria as in reference (13), however, places more 

importance on sulfate-free régénérant waste and less importance on regeneration 

efficiency. 
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SECTION n. POTENTIOMETRIC DETECTION OF HALIDES 

AND PSEUDOHAUDES 

BSr ANION CHROMATOGRAPHY 
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LITERATURE SURVEY 

Ion chromatography is the leading analytical method for determining anions in 

aqueous samples. Most frequently, detection of eluted anions is by conductivity or 

spectrophotometry. In a few cases, potentiometric detection of eluted anions has 

been employed. Franks and Pullen (1) used a small silver-silver chloride indicator 

electrode for the selective potentiometric detection of halides in anion-exchange 

chromatography. Deguchi et al. (2) used a similar detection system for gel 

chromatography. In both papers, the detectors worked well, but the speed and 

quality of the chromatographic separations were distinctly inferior to that now 

attainable. 

Trojanowicz and Matuszewski (3) obtained good results in the potentiometric 

determination of chloride by flow-injection analysis. Hershcovitz, Yamitsky and 

Schmuckler (4) used a silver wire coated with silver salicylate for potentiometric 

detection of halides and thiocyanate in ion chromatography. Alexander et al. (5,6) 

in Australia, and Loscombe et al. in England (7) have successfully used a copper 

electrode for the potentiometric detection of a number of anions and cations in ion 

chromatography. 

In the present work, several types of silver electrodes, coated with an insoluble 

silver salt, are evaluated for potentiometric detection of anions in modern 

chromatography. The surface characteristics of the most promising are studied by 
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electron microscopy. The practical advantages of these as detectors in 

chromatography are demonstrated using both isocratic and gradient elution. 
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EXPERIMENTAL 

Equipment 

The HPLC equipment consisted of a Model AA-94 Eldex dual-channel pump, a 

Model 7000 Rheodyne injection valve with a 20/xL sample loop, and a Li-Chroma-

Damp in pulse dampener. The leads from the potentiometric cell (see below) were 

connected to a Model 12 Coming pH meter. The recorder output of the pH meter 

was connected to a Model 5000 Fisher chart recorder. For gradient work, a Tracor 

model 980A, low-pressure solvent programmer was used. 

Column 

The anion-exchange column used in this work was either a 4.6 x 50 mM TSK 

Gel or an XAD-1 column functionalized and packed in this laboratory. Neutral 

XAD-1 particles (20-26 /xm) were functionalized via chloromethylation followed by 

amination with trimethylamine as in Barron and Fritz (8). Conditions were chosen 

such that a final capacity of 84 /icq/g would be obtained. A 400- x 2-mm glass 

column was packed using a 40% ethylene glycol diluent. 

Potentiometric Cell 

The potentiometric cell was made from two polypropylene tube fittings, a 

coupler and a teflon spacer as in Figure 1. One fitting held the column effluent 
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Figure 1, Potentiometric Cell. 
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delivery tube. The other held a larger bore polypropylene tube which tightly 

surrounded the silver wire electrode. The column effluent passed through one 

fitting, around the Ag/AgCl electrode, and out through a hole drilled into the center 

of the coupler. The fittings were tightened against the Teflon spacer and effluent 

was allowed to exit the electrode compartment via a notch in the electrode side of 

the spacer. The salt bridge of the reference electrode was placed in the hole in the 

coupler where electrical contact with the effluent could be maintained. 

Electron Microscopy 

A JEOL JSM-35 scanning electron microscope (SEM) in the secondary 

electron mode, with an accelerating voltage of 20 kV and a beam current of 65 

microamps, was used to obtain the micrographs. Specimens were mounted on brass 

discs with double-stick tape and coated with approximately a 15 nm thickness of 

Au/Pd in a Polaron E5100 Sputter Coater. Images were recorded on Polaroid Type 

665 film. 
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RESULTS AND DISCUSSION 

Preparation and Preliminary Evaluation of Electrodes 

Electrodes coated with a thin layer of a silver anion precipitate were prepared 

by electrical oxidation of a silver wire in an aqueous solution of the selected anion 

for a period of 3 to 7 min. In some cases, a silver chloride precipitate layer was 

formed by immersing a silver wire in a solution of the iron(III) chloride. 

Silver wire electrodes coated with AgCl, AgBr, Agi, AggPO^, Ag2S, and 

AgSCN were evaluated for detection of various anions by flow-injection analysis. 

The flow-injection apparatus consisted of a single-piston pump, a six-port injection 

valve and the electrode arrangement in Figure 1. A 0.01 M solution of sodium 

perchlorate was pumped through the system at a flow rate of 4.5 mL/min and a 

small volume of test solution was injected. Figure 2 shows the response and 

repeatability for several different anions with a Ag/AgCl electrode. The response 

and repeatability were equally good with a Ag/AgSCN electrode. 

The surface of several of the electrodes was examined by electron microscopy. 

Figure 3 shows portions of the surfaces at high magnification (Bar = 2/im). 

Electrode coatings of smaller particle sizes are observed to have less band 

broadening and tailing of peaks in flow injection experiments. Ag2S is an exception 

to this trend; it has small particles but still shows peak deformations when used as 

an electrode. 
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Figure 2. Flow injection analysis with a Ag/AgCl electrode. Carrier: O.OIM 
sodium perchlorate, flow-rate, 4.5 mL/min. All samples are 0.1 mM 
unless indicated. 
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Figure 3. Ag/Agj^x electrode surfaces. Each was prepared by passing 100/iA 
of current for 7 minutes through a solution containing the 
appropriate anion x"", a silver wire anode, and a platinum cathode. 
Bar = 2 microns. A. AgCl, B. AgSCN. C. Agi. D. Ag2S. E. 
AggPO^. F. AgBr. 
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These preliminary evaluations indicated that either the Ag, AgCl or Ag, 

AgSCN should be a satisEactoiy detector electrode for flow-iqection analy  ̂or ion 

chromatography. Ag^gBr may also be used, but some loss of resolution in 

chromatography is expected from the band broadening and peak taOiiig associated 

with this electrode. 

Ion Chromatogr^hy with Isocratic Elution 

A silver-silver chloride electrode in conjunction with a calomel reference 

electrode (see Figure 1) was used for detection of various anions sqMurated by ion 

chromatography. A dflute aqueous solution of sodium perddorate or sodium sul&te 

served as the eluent The baseline was found to be unstable until several samples 

had been injected. However, it was found that a new silver-silver chloride electrode 

could be conditioned ly dipping it into a solution of the analyte 3 or 4 times before 

installing it in the detector. Electrodes so treated quickly gave a steady baseline. 

Figure 4 shows an electron-micrograph of a conditioned silver-silver chloride 

electrode. Comparison with the photo in Figure 3d Aows that the surface of the 

conditioned electrode appears to be a composite of maiy silver salts covering the 

underlying silver chloride precipitate. 

Use of an ion-selective electrode as a detector in ion diromatograply has the 

advantage that many anions are not detected (or are detected with very small 

response factors) and will not interfere in the determination of the detected anions. 
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Figure 4. Ag/AgG electrode surfaces, prepared by dipping a silver wire into 
an aqueous FeQ  ̂solution for 4 minutes. = 2 microns. A. 
Fresh electrode. B. Electrode conditioned by dipping several times 
in a solution containing lO'̂ M each of r, Br", Q", SCN", SgOq", 
S04=,P043-. 
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Figure S shows the chromatographic separation and potentiometric detection of 1.0 

mM chloride, bromide, iodide, thio^anate and thiosulfate; the sample also 

contained equimolar concentrations of nitrate, phosphate, carbonate, sulfate and 

acetate which were not detected. A 43 mM solution of sodium perchlorate was 

employed as the eluent and injection volumes were 20 pL. 

Sodium sulfate eluents also give good separations of several inorganic anions 

when used in conjunction with the silver-silver chloride potentiometric detector. 

Table I compares the actual retention times of halide and pseudohalide ions with 

sulfate and perchlorate eluents. The retention times relative to chloride are also 

shown; these show perchlorate to be the more efficient eluent for iodide, diloride, 

bromide and thiocyanate. Thiosulfate is eluted more efficiently by the divalent 

sulfate eluent. 

Calibration curves were prepared for peak area and peak height against anion 

concentration and against log of anion concentration. Hie calibration plots varied 

less from one anion to another when peak heî t was used. Figure 6 shows the 

curves obtained for peak height plotted against log concentration. While not linear, 

the curvature is sufficiently slight for use as practical calibration curves. The 

working range is approximately 0.05 mM to 2.0 mM. Two previous authors (1,2) 

noted linear calibration curves (detector response vs. concentration), but another 

work (4) found predominantly logarithmic curves. ITie combined influence of 
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Figure 5. Typical chromatogram with potentiometric detection at a Ag/AgCl 
electrode. Eluent: 4.5 mM sodium perchlorate, flow-rate, 1.6 
mL/min; injection volume, 20mL; analyte concentration, 1.0 mM. 
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Table I. Comparison of retention of anions with different eluents. TSK anion-
exchange column; eluent flow rate 1.6 mL/min; Ag,AgCl detector 
electrode 

Relative Retention, Actual Retention 

Cr = 1.00 Time, min. 

5.0mM lO.OmM S.OmM lO.OmM 

Ion ClOx" SO a" CIO4" SO a" 

Cr 1.00 1.00 2.08 1.41 

Br- 1.48 2.18 3.07 3.07 

r 2.84 8.37 5.9 11.8 

SCN" 4.54 - 9.44 

S2O3 7.83 3.01 16.28 4.25 
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concentration, solubility product, adsorption and rate effects determines the peak 

potentials (4). 

Slopes for the calibration curves in Figure 6 were 30 mV/mM or less. The 

electrode response is a function of the total ionic strength of the solution in the 

detector cell as well as the activity. Thus, the slope of a calibration curve is 

expected to change with the concentration of eluent used. It may also change for 

samples containing a high concentration of non-detected anions. 

The reproducibility of peak area of CI", Br", I" and SCN" was checked by 

separating a sample containing these ions 10 times, and by separating a sample 

containing these anions plus equimolar amounts of phosphate, nitrate, sulfate, 

carbonate and acetate 10 times. The values of the mean (x) and standard deviation 

(S) are given in Table II. The results show a negligible effect of the undetected 

anions at the concentrations used. 

Ion Chromatography with Gradient Elution 

The use of eluent concentration gradients in chromatography has been quite 

difficult using conductivity and spectrophotometric detectors. The large majority of 

papers published in ion chromatography have used isocratic elution. However, 

gradient elution would be advantageous for separation of samples containing both 

early- and late-eluting anions. 

The fact that an ion-selective electrode gives little or no response to many ions 

suggests the possibility of programming the eluent concentration throughout the 
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chromatographic run. Figure 7 shows the separation and detection of five halides 

and pseudohalîdes using a gradient of 3.5 mM to 10.0 mM sodium perchlorate. 

Compared to the same separation in Figure 5, the peak shape for 8203" is much 

improved and the time required for separation is significantly less. 
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Figure 6. Calibration plot of peak height vs. log concentration. Eluent as in 
Fig. 5. Peak height in mvolts. 
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Table II. Reproducibility of peak areas. S and x in each set are based on 10 
runs 

No Foreign Ions With Foreign^ Ions 

Ion& X S X S 

cr 26.5 3.9 26.6 1.3 

Br- 51.2 2.5 53.1 1.5 

r 68.1 2.4 66.0 1.1 

SCN" 74.3 3.0 72.5 2.3 

^1.0 mM concentration. 

^Foreign ions are PO^^", NOg", SO^", COg", AcO" each l.OmM. 



www.manaraa.com

80 

B? 

SCN" 

lOmV 

-i 1 1 r 
0 2 4 6 

Time (min) 

Figure 7. Gradient elution with potentiometric detection. Eluent: 3.5 -10.0 
mM sodium perchlorate; flow-rate, 1.6 mL/min; injection volume, 
20/iL; analyte concentration, 1.0 mM. 
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CONCLUSIONS 

A small silver-silver chloride electrode rapidly attains a reproducible potential 

with varying concentrations of halide anions in a flowing system. This suggests the 

use of such an electrode for rapid determination of various halides by flow-

injections analysis. However, individual halide and pseudohalide anions can be 

separated by ion chromatography and measured potentiometrically using a silver-

silver chloride electrode. Gradient elution is also possible in the latter case. 
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SECTION m. DETERMINATION OF ALUMINUM BY 

ANION CHROMATOGRAPHY 
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INTRODUCTION 

The chromatographic analysis of samples containing aluminum is most often 

done by cation-exchange chromatography. While in many instances this is a very 

excellent approach, some disadvantages are unavoidable. Bivalent and tervalent 

metal cations, which are often present in an aluminum sample, serve to clutter a 

chromatographic separation or necessitate long analysis times. High concentrations 

of these cations, as in the case of iron ore samples, intensify the problem by 

overloading a cation-exchange column and swamping the aluminum peak. 

Two methods are presented for determining aluminum by anion 

chromatography. The first technique makes use of the strong formation constants 

between aluminum and fluoride ion. A standard fluoride solution will show a 

decrease in free fluoride from addition of Al(III) due to AlF^ complex formation. 

Fluoride complexed by Al(III) is then separated from free, excess fluoride and 

quantified. Al(in) in the original sample is then proportional to the depression of 

free fluoride peak height. The second method depends on the complexation of 

Al(III) by a phthalate eluent. The Al(III)-phthalate species are retained by an 

anion-exchange column while metal cations such as Ca^"*", Mg^"*", Cr^^, Th^"^, 

Co^"^, Ni^"^, Mn^"^, Zn^"*" and Fe^"*" appear to elute in the injection peak. AI(III) 

can then be easily separated from metal cation interference and determined. The 
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method is applied to the determination of Al(in) in a synthetic iron ore sample 

consisting of 1 part Al^ in 40 parts Fe^ . 
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LITERATURE SURVEY 

Typical analyses of aluminum-containing samples by chromatography have 

involved gravity separator columns and/or quantitation of Al(III) by atomic 

absorption spectroscopy (AAS), colorimetry or EDTA titrations of collected 

fractions (1-6). Such methods are often labor intensive, slow or inaccurate. Some 

colorimetric methods of aluminum analysis are also plagued with interference from 

Fe(in) and Mn(n) (7-9). 

Fortier and Fritz (10) determined Al(III) by single-column cation-exchange 

chromatography with conductivity detection. Bertsch and Anderson (11) 

determined aluminum by separation with single-column cation chromatography and 

colorimetric detection by post-column reaction with the color-forming reagent, 

Tiron. A brief application note (12) also described a similar method for Al(in) 

using cation-exchange and Tiron. Sen Sarma and Majumdar (6) separated Al(ni) 

from iron ore solutions by ion-exchange removal of anionic Fe(III) chloro-

complexes in 9 M HCl. Al(in) was then extracted into methylene chloride as the 

oxinate complex and determined colorimetrically. 

Retention of Al(ni) in anion chromatography has been described, but only as 

an interference, not as an analytical method. Wimberley (13) described the 

retention of alkali and alkaline earth metals on an anion-exchange column made 

from anion-exchange latex agglomerated onto sulfonated resins. Retention was 
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shown to be due to a cation-exchange interaction with residual, unprotected sulfonic 

acid groups of the base resin. Jenke and Pagenkopf (14) and other studies (15-18) 

reported retention of metal ions on silica-based anion-exchange columns. This 

behavior was largely reported as being due to metal interactions with residual 

silanol groups on the silica gel surface. 
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EXPERIMENTAL 

Equipment 

The instrument used consisted of a model AA-94 Eldex dual channel pump, a 

model 7000 Rheodyne injection valve with a 20- or 100-^1 sample loop, a Li-

Chroma-Damp m pulse dampener, a model 213 A Wescan conductivity meter and a 

model 5000 Fisher strip-chart recorder. 

Column 

The anion-exchange column used in this work was an XAD-1 column 

functionalized and packed in this laboratory. Neutral XAD-1 particles (20-26 nm) 

were functionalized by chloromethylation followed by amination with 

trimethylamine as in Barron and Fritz (19). Conditions were chosen such that a 

final capacity of 84 neq/g would be obtained. A 400- X 2-mm glass column was 

packed by the balanced density method using a 40% ethylene glycol diluent (20). 

Eluents and Sample Solutions 

Analytical grade mono-potassium phthalate (KHP) was used for the eluent. An 

eluent pH of 4.0 was obtained on dilution of the appropriate amount of KHP and no 

further pH adjustment was required. Prior to use, eluents were filtered through 0.2-
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/xm membrane filters and degassed for 20 minutes. Sample solutions were made 

with the finest grade chemicals available from Fisher Chemical Inc. Tervalent 

cation solutions were made with an equimolar concentration of nitric acid to 

prevent flocculation. 
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RESULTS AND DISCUSSION 

Indirect Determination of Aluminum 

An indirect method for the determination of Al(III) was briefly investigated. 

The technique is based on the fact that aluminum(III) will form very strong 

complexes with fluoride ion. When a standard excess of fluoride ion is added to an 

aqueous aluminum sample, several AlF^ complexes are formed. Excess free 

fluoride can then be separated from the aluminum-fluoride complex by anion 

chromatography. A typical chromatogram for this separation is shown in Figure 1. 

The eluent used for this separation was 1.5 mM KHP at a pH of 4.0. Under these 

conditions, free fluoride is resolved from the pseudo peak followed by elution of 

sulfate. Increasing amounts of aluminum in a sample serve to decrease the peak 

height of the free fluoride. Aluminum can therefore be determined indirectly by 

noting the decrease in excess fluoride determined between the sample and a blank. 

Figure 2 is a calibration curve for the fluoride peak height vs. the concentration 

of aluminum added. A standard fluoride concentration of 1.0 mM was used 

throughout, while aluminum concentrations were varied from 0.2 mM to 0.5 mM. 

The curve is linear when fluoride is in a 4-fold excess or greater. Extrapolation of 

the linear region to 0 fluoride peak height gives an intercept of 0.334 mM 

aluminum. Given that the fluoride concentration is 1 mM, a ratio of 3 P per 1 

Al(III) is indicated. Confirmation of this AIF3 stoichiometry is also shown by the 
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Figure 1. Separation of free fluoride from 
aluminum complexed fluoride. Eluent 
conditions; 1.5 mM KHP, pH 4.0. Flow 
rate; 1.6 mL/min. Sample; 0.1 mM 
AlK(S04)2in 1.0 mMF. 
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Figure 2. Calibration curve for the indirect aluminum method. Initial fluoride 
concentration is 1.0 mM. 
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slope of the linear region which gives a ratio of 3.25 F" per Al^"*". It follows that for 

every aluminum ion, three ions of fluoride are removed from the standard fluoride 

solution. 

Interferences. Indirect Method 

Interference due to metal cations was evaluated for Ca^"*", and Fe^"^. 

These metals were chosen because they are known to form complexes with fluoride 

ion (21). Concentrations of 0.3 and 3.0 mM of each metal ion were added to a 

solution containing 1 mM fluoride and 0.2 mM Al^"^. Although Fe^"*" has a very 

high formation constant with fluoride ion, interference was not observed at either 

concentration. Ca^"*" and Mg^"^, on the other hand, have relatively low formation 

constants but were found to interfere with the determination. The eluent pH of 4.0 

may provide some explanation for the above results. Although Fe^"^ has a stronger 

formation constant with F", its value may fall off more sharply with pH. A further 

decrease in eluent pH may remove the interferences caused by Ca^"*" and Mg^"*". 

Interferences by anions were mainly due to co-elution. Strongly retained ions 

such as sulfate also necessitated long analysis times and the situation was intensified 

by the mild eluent conditions necessary for resolution of fluoride from the pseudo 

peak. 

Interferences due to other anions competing with the AlFg complex are 

expected. Since phosphate forms strong complexes with aluminum, interference due 

to phosphate competing with fluoride ion is expected. An indirect method using a 
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standard excess of phosphate instead of fluoride was also evaluated. The sensitivity 

of the phosphate method, however, was found to be far below that of the indirect 

method using fluoride and therefore was not further investigated. 

Direct Determination of Aluminum 

In the absence of free fluoride, Al(in) will give a chromatographic peak with 

the eluent conditions described in Figure 1. A chromatogram for this separation is 

shown in Figure 3. The peak labeled Al^"*" is believed to be an anionic complex of 

aluminum phthalate and is retained slightly longer than fluoride ion (3 min for 

Al(III) vs. 1.8 min for F"). The origin of the peak following sulfate in the 

chromatogram is not certain. Lower sample pH serves to increase this peak while 

addition of fluoride to complex Al(in) serves to decrease the peak. 

The phenomenon of aluminum(in) retention by phthalate complexation was 

discovered while investigating the above indirect method using fluoride ion. As 

Al(III) began to exceed the amount of free fluoride in a sample, a new peak 

emerged while the peak for fluoride disappeared. The curve for this experiment is 

shown in Figure 4. A signal for the Al-phthalate complex was not observed until all 

free fluoride was consumed. Also shown in Figure 4 is the calibration curve for 

Al(ni) in the absence of fluoride ion. The curve shows good linearity from 0.2 mM 

Al(III) to 1.4 mMAl(ni). 
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Figure 3. Separation of Al(in) as the Al(in)-
phthalate complex. Eluent conditions 
were as in Figure 1. Sample; 0.2 mM 
A1K(S04)2. 
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Direct Determination of Aluminum 

240-
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—A— AI plus ImMolar Fluoride 
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90-
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40-

— — — — -A 
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Concentration of Aluminum (mMolar) 

Figure 4. Calibration curve for the direct aluminum method. Also shown is 
the effect of 1.0 mM added fluoride. 
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Interferences. Direct Method 

Interferences to the direct method naturally include fluoride and phosphate as 

they form stronger complexes than that of phthalate. Other species, which complex 

aluminum and prevent formation of the aluminum phthalate complex, are also 

presumed to interfere. Chloride and nitrate were not completely resolved from the 

aluminum peak and so interfered with its determination. Interferences due to 

chloride and nitrate were easily removed, however, by passage of the sample 

through a high capacity anion-exchange column in the sulfate or perchlorate form. 

In this case, all sample anions were exchanged for sulfate or perchlorate which elute 

later in the chromatogram and do not interfere with Al(III). 

Interference due to metal ions was evaluated for 1.0 mM solutions of each of 

the following: Cr^"^, Cu^"*", Th^"^, Co^"*", Ni^"^, Mn^"*" and Zn^"^. Interference 

was not observed for any metal cation except Cu^"^, which was unresolved from 

Al(III). Furthermore, Cu^^ gave a larger signal than an equal concentration of 

ai3+. 

Interference due to Cu(II) can be compensated by addition of fluoride to the 

Al(ni) + Cu(n) sample. This procedure takes advantage of the fact that Al(III) will 

complex fluoride while Cu(II) will not. As shown in Table I, the peak height of 58 

mm for Cu(II) is not affected by addition of 1.0 mM fluoride. The peak height for 

the Cu(II) + Al(III) sample is 84 mm. By addition of a 1.0 mM fluoride, the peak is 

reduced to the original peak height of 57 mm, that of 0.2 mM Cu(II) alone. Al(III) 
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could then be determined by the difference in peak height at the 

phthalate retention time or by the indirect method described above. 

Table I. Removal of Al^ from by complexation of Al^ with F" 

Sample Peak Height (mm) 

0.2 mM Cu2+ 58 

0.2mMCu^+ + 1.0 mM F 56 

0.2 mM Cu2 + + 0.2 mM Al^ + 84 

0.2 mM Cu2+ + 0.2 mM Al^^ + 1.0 mM F 57 

Aluminum(III'> in Excess IronflH^ 

The direct method was successfully applied to the determination of AI^"^ in a 

40-fold molar excess of iron(III). Table II demonstrates the determination of 0.2 

mM Al^"^ and 0.2 mM Al^"^ with 8.0 mM Fe^"*" added. Each sample was made 

from the chloride salts and passed through a high capacity anion-exchange column 

in the sulfate form to remove CI" interference. During this exchange process the 

iron sulfate formed was found to precipitate on the column causing a significant 
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reduction in Fe^^ content. This reduction in Fe^"*" was not required for this 

method as Fe^"*" did not interfere, but may find utility in other methods where 

Fe^"*" is an interferent. The last entry in Table II demonstrates the lack of 

interference in this method due to Fe^"^. In this case the AI^'^-Fe^'*" sample was 

passed through a high capacity anion-exchange column in the perchlorate form. 

Iron perchlorate is a soluble salt, and so its precipitation was not observed. A 

reduction of Fe(in) content in the perchlorate system did not occur, yet the peak 

height due to Al(III) remained unchanged. 

Table II. Determination of Al^ ̂  in 40-fold excess Fe^ . 

Sample Peak Height (mm) 

0.2 mM A1K(S04)2 44 

0.2 mM A1K(S04)2 + 8.0 mM Fe^^ (SO^^) 46 

0.2 mM A1K(S04)2 + 8.0 mM Fe^ + (CIO4-) 45 

Mechanism of Retention 

One possibility for the mechanism of retention is phthalate ion acting as an 

ion-pairing reagent. If this were the case, the retention of Al(ni) and Cu(II) would 

still be observed on an unfunctionalized, neutral column of PS-DVB resin. 
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Furthermore, interferences due to the retention of anions would be removed. 

To test the above theory, a column of the same dimensions as that of the 

anion exchange column was packed with neutral, unfunctionalized XAD-1 particles. 

Eluent conditions were exactly as described for the anion exchange column in 

Figure 3. Injection of Al(in) and Cu(n) solutions did not produce chromatographic 

peaks which were responsive to changes in analyte concentration. Eluent 

concentrations of 0.5 mM and 10 mM were also evaluated, but still no retention of 

Al(in) or Cu(II) was observed. The above experiment was also performed using a 

Polymer Labs PLRS, neutral PS-DVB column. Again, no retention of Al(III) or 

Cu(n) was observed. 

To confirm the above results, fractions of effluent were collected and analyzed 

by flame atomic absorption spectroscopy (AA). In these experiments, Cu(n) was 

used because its limit of detection in flame AA was much higher than for Al(ni). A 

strong signal for copper was observed only in the pseudo peak of the XAD-1 neutral 

column. AA analysis of factions from the anion exchange column confirmed the 

retention of Cu(II) as labelled in Figure 3. 

A study by Siriraks et al. (18) found retention for Zn^"^, Pb^"*" and Cu2+ 

under conditions similar to this work. They concluded that retention was due to 

interaction of the metal-eluent complexes with the hydrophobic backbone of the 

resin and described retention on a neutral, PS-DVB column. A chromatographic 
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peak was observed on the XAD-1 neutral column after injection of Al(in) or Cu(n). 

The AA experiment, however, did not demonstrate retention of Cu(II). 

Furthermore, this peak was not responsive to varying Al(III) or Cu(II) 

concentrations. 
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CONCLUSION 

Methods for the determination of aluminum by anion chromatography have 

been presented. An indirect method determines aluminum by its effect on free 

fluoride. The direct method is based on complex formation of aluminum with a 

phthalate eluent. While both methods contain certain limitations as individual 

techniques, used in conjunction, they become diverse and powerful tools for the 

determination of aluminum under a variety of circumstances. 
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